Tetrahedron Letters No. 33, pp 2877 - 2880, 1976. Pergamon Press. Printed in Great Britain.

SENDANIN, A NEW LIMONOID FROM MELIA AZEDARACH LINN. YAR. JAPONICA MAKINO

Masamitsu Ochi^{*} and Hiyoshizo Kotsuki

Faculty of Arts and Sciences, Kochi University, Asakura, Kochi 780, Japan

and

Ken Hirotsu and Takashi Tokoroyama

Faculty of Science, Osaka City University, Osaka 558, Japan (Received in Japan 12 June 1976; received in UK for publication 29 June 1976)

A number of limonoids have been isolated from <u>Melia azedarach</u> and <u>Azadirachta</u> <u>indica</u> (Meliaceae).¹⁾ The closely related species <u>Melia azedarach</u> Linn. <u>var</u>. <u>japonica</u> Makino is a large tree found commonly in the southwest of Japan, and has an intense bitter taste in the fruits and bark. We report herein the isolation and structure determination of a new bitter limonoid designated as sendanin from this tree.

Sendanin (1) was isolated in 0.02 \$ yield as colorless prisms, $C_{32}H_{40}O_{12}$, mp 251-252°, $[\alpha]_D^{16}$ +4.3° (c 0.12, CHCl₃), from the methanol extract of the dry bark by partitioning, acetylation, and careful silica gel column chromatography, and exhibits the following spectral data. IR (KBr): 3590, 3460, 3150, 1750, 1735, 1720, 1510, 1270, and 885 cm⁻¹; UV (EtOH): 210 nm (ε 8790); MS: m/e 556 (M⁺-60), 538 (M⁺-60-18), 496 (M⁺-120), 478 (M⁺-120-18), and 436 (M⁺-180); ¹H NMR ($\delta_{\rm H}$): Table 1; ¹³C NMR ($\delta_{\rm C}$): Table 2. These data suggest that (1) has one β -substituted furan ring,²) one ketonic, two hydroxyl, and three acetate groups. The secondary nature of two hydroxyl groups is revealed by the appearance of two doublets in the ¹H NMR spectrum at δ 6.20 and 6.61 (25°C), which shift to a higher field by warming. This was confirmed by the oxidation of (1) with Jones' reagent which afforded a triketone (2), $C_{32}H_{36}O_{12}$, mp 190-192°. ¹³C NMR spectrum of (2) displays three ketonic carbon signals at δ 206.0, 205.5, and 201.6. The ¹H and ¹³C NMR spectra of (1) show, in addition to the above functional groups, the presence of two groupings, $-c_{\rm O}$ CH-[$\delta_{\rm H}$ 3.91 (1H, s)³; $\delta_{\rm C}$ 59.1 (d) and 73.2 (s)⁴] and $-CH-O-[\delta_{\rm H}$ 6.10 (1H, s)⁵; $\delta_{\rm C}$ 95.6 (d)⁶]. The appearance of the ¹H NMR

signal at δ 4.58 (2H, s) in conjunction with consideration of the number of the oxygen atoms in (1) suggests that the latter grouping constitutes the partial structure $-CH-O-CH_{\overline{2}}$. The ¹H NMR data of (2), coupled with double resonance OAc experiments, indicate the presence of a system $-C_{\overline{2}} - C_{\overline{2}} - C_{\overline{2}} - [H_{2e}: \delta 2.53 (1H, br. OAc H_{2e}]$ d, J = 16 Hz), H_{2e}: δ 3.57 (1H, dd, J = 6 and 16 Hz), H₃: δ 5.56 (1H, br. d, J = 6

Hz)], which in turn had derived from a monoacetylated 1,3-glycol system in (1). The 13 C NMR spectrum of (1) assisted with off-resonance technique also shows the presence of four quaternary carbons (δ 46.5, 43.2, 42.2, and 39.8, each s), three methine carbons (δ 49.8, 39.2, and 29.0, each d), four oxygen-bearing methine carbons (δ 79.1, 74.0, 70.1, and 69.5, each d), and three methylene carbons (δ 36.6, 34.2, and 26.5, each t).

From the afore-mentioned data and the biogenetic considerations,⁷⁾ it would be quite reasonable to assign for (1) the 14,15-epoxymeliacan skeleton (3).^{7c)} The possible location of the hemiacetal ring would be $C_{28}-C_{19}$ or $C_{19}-C_{30}$ and the monoacetylated 1,3-glycol system must rest in A ring. The exact positions and configurations of the groupings present in (1) were determined by X-ray diffraction method.

Fig. 1

	Table 1	H NMR ^{spe} (100 MHz,	octra of (1) 8 values) ^{a)}	and (2)	Table 2 ¹³ 0 (25	NMR spec MHz, Ô va
	(1) ^{b)}		(2) ^{c)}		Carbon atom	(1) ^{d)}
н-1	4.74 m				1	70.1*1
H-201			2.53 d	J = 16	с, с	36.6
н- 28			3.57 dd	J = 16 and 6	∩ -	,
н-3-	5.47 br	d J≡5	5.56 br d	J = 6	4 N	29.0 29.0
Н-7	3.84 m				9	26.5
н-9	5.32 в		4.20 s		7	69.5 ^{*1}
H-12	5.82 s		5.65 в		αc	42.2*2
н - 15	3.91 s		3.91 в		م	49.0 1.0 0*2
н-19	4.58 s		4.49 AB q 4.71	J = 14		43.2 208.7 20.1
H-21	7.24 s		7.12 8		12	79.1 1,6 = *2
H-22	6.19 d	J = 2	6.08 d	J = 2	0 T T	73.2
н-23	7.39 d	J = 2	7.25 d	J = 2	15	59.1
H - 28	6.10 s		6.00 s		17	39.2
Me	0.93		0.69		19	66.0
	1.24 1.82		1.11		2 12 2	143.2
OAc	1.82 1.94		1.70 1.87(×2)		28 28 28	141.6 95.6
но-'о	1.97 6.20 d	J = 4			сосн3	170.9(x2) 170.0
с ₇ -он	6.61 đ	J = 4			COCH	22. R
a) Coul	pling consta singlet. d:	ants are doublet.	expressed in t: triplet.	l Hz. q: quartet.	6	21.1
8	multiplet.		• 		ссн	20.7

Table 2 13	C NMR spect	rra of	(1) and (2)	
(2	5 MHz, Ô va	lues,	TMS as stand	pra
Carbon atom	(1) ^{d)}		(2) ^{e)}	1
1	70.1*1	ס	205.5*3	80
2	36.6	ı د	10.04	4
e	74.0	þ	73.6	σ
4	39.8 ^{*2}	a)	45.7 ^{*4}	ØŬ
Γ	29.0	ס	40.1	σ
9	26.5	4	32.9	4
7	69.5 ^{*1}	q	201.6 ^{*3}	Ø
œ	42.2*2	80	50.2*4	Ø
6	49.8	q	53.6	ъ
10	43.2*2	Ø	51.4*4	60
11	208.7	0 0	206.0 ^{*3}	Ø
12	1.97	q	77.7	ъ
13	46.5*2	Ø	46.4*4	Ø
14	73.2	a 0	67.9	0 0
5	59.1	τ,	57.7	ъ.
17	34.2	יט		7 9
19	66.0	دب ز	62.3	د و
20	124.0	Ø	122.1	6
21	143.2	Ъ	142.7	Ъ
22	112.8	יסי	111.3	יס
28 28	95.6	סינ	93.6	סיס
COCH3	170.9(x2)	Q)	169.7	Ø
ſ	170.0	so.	169.3 169.0	00 00
сосн	22.8	ď	21.4	σ
n	21.1	ۍ نې	20.6(x2)	σ
	1.02	ד		
ссн ₃	20.7	סי כ	17.9	ליס
	15.7	יס י		יי
d) Recorded	in CDC1,.			l
e) Recorded	in $CDC1_3 - b$	enzene	-d ₆ (1:1).	
	•			

No. 33

*1-4 These values may be interchanged.

b) Recorded in pyridine-d₅ at 25°C.
c) Recorded in CDCl₃ - benzene-d₆ (1:1).

The crystals, $C_{32}H_{40}O_{12}$, are monoclinic, space group $P2_1$; a = 9.749(4), b = 13.461(5), c = 11.933(4) Å, β = 91.27°; D_x = 1.308 g·cm⁻³ (Z = 2). Intensities of 2450 reflections were collected on a Philips four-circle diffractometer by the $\omega/2\Theta$ scan technique with graphite-monochromated Mo-KQ radiation for a maximum 2 Θ angle of 55°. The structure was solved by multisolution tangent refinement methods⁸ and has been refined by least-squares calculations to a final R of 0.057.9,10)

The stereo view of the molecule is shown in Fig. 1. The positions and configurations of substituents are: 1α -OH, 3α -OAc, 4α -CH₃, 5α -H, 7α -OH, 8β -CH₃, 9α -H, 11-oxo, 12α -OAc, 13α -CH₃, $1^{4}\beta$, 15β -epoxy, 17α -C₄H₃O (furan ring). The hemiacetal ring is formed between C₂₈-C₁₉. The ring C has a boat form. The five-membered ring D takes an envelope form with C₁₇ by 0.61 Å out of the mean plane through the other four atoms.

<u>Acknowledgements</u> We thank Dr. K. Matsushita of JEOL Ltd. for the measurement of ¹³C NMR and professor K. Nakanishi of Columbia University for ¹³C NMR spectra data of some limonoids.

REFERENCES

- P. R. Zanno, I. Miura, K. Nakanishi, and D. L. Elder, <u>J. Amer. Chem. Soc.</u>, <u>97</u>, 1975 (1975) and references cited therein.
- T. R. Govindachari, B. S. Joshi, and V. N. Sundararajan, <u>Tetrahedron</u>, <u>20</u>, 2985 (1964).
- 3. J. W. Powell, <u>J. Chem. Soc.</u> (C), 1794 (1966).
- 4. D. A. H. Taylor, <u>J. Chem. Soc.</u> Perkin I, 437 (1974).
- 5. E. Fujita, T. Fujita, and M. Shibuya, <u>Chem. Pharm. Bull.</u>, <u>16</u>, 509 (1968).
- 6. D. E. Dorman and J. D. Roberts, <u>J. Amer. Chem. Soc.</u>, <u>92</u>, 1355 (1970).
- 7. a) R. Hodges, S. G. McGeachin, and R. H. Raphael, <u>J. Chem. Soc.</u>, 2515 (1963);
 b) W. R. Chan, J. A. Gibbs, and D. R. Taylor, <u>Chem. Commun.</u>, 720 (1967); c)
 D. A. Okorie and D. A. H. Taylor, <u>J. Chem. Soc.</u> (C), 1828 (1968); d) E. K.
 Adesogan, D. A. Okorie, and D. A. H. Taylor, <u>J. Chem. Soc.</u> (C), 205 (1970).
- 8. M. M. Woolfson and G. Germain, Acta Crystallogr., B24, 91 (1968).
- 9. The Universal Crystallographic Computing System (I) ed. by T. Sakurai, The Crystallographic Society of Japan (1967).
- All calculations were performed on a FACOM 270/30 computer at the Computer Center of Osaka City University.